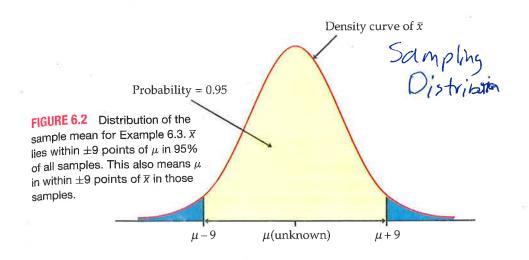
Confidence Intervals


We sample 500 individuals from a large population and measure their score on a test. (SAT) We Find X = 461. We want to know the mean test score, M, For all 475,000 Students in the population; (high school seniors in (alibornia). Assume the standard deviation is o (population

X~ N(M, 50)

Standard deviation

The use of Z-statistics require that we Know O, (Unrealistic). It you don't know o Use +- statistics. Say 0=100, Then X~N(M,9.5) . Recall

95% of the time X lie within 2 x 4,5 = 9 point

we don't know where 461 lies on this graph because we don't Know &

9 is the margin of error of this study our estimate is 461 = x 95% of the time M is within 9 points OF our estimate. (461-9, 461+9) = (452, 470)15 our confidence interval. We are 95% confident that the population mean is between 452 and 470 If we start over with a new random sample of 500 Students we will get a new Density curve of \bar{x} confidence interval. 95% of the time our confidence interval will con tain M, FIGURE 6.3 Twenty-five samples from the same population gave these 95% confidence intervals. In the long run, 95% of all samples

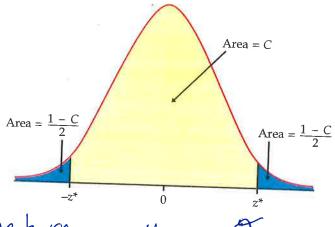
give an interval that covers μ . The sampling distribution of \overline{x} is shown at the top.

Z* is the critical value of the test statistic in this cax

CONFIDENCE INTERVAL FOR A POPULATION MEAN

Choose an SRS of size n from a population having unknown mean μ and known standard deviation σ . The **margin of error** for a level C confidence interval for μ is

$$m = z^* \frac{\sigma}{\sqrt{n}}$$
 (ned to know 0)


Here z^* is the value on the standard Normal curve with area C between the critical points $-z^*$ and z^* . The level C **confidence interval** for μ is

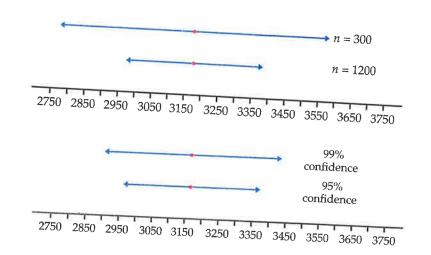
$$\bar{x} \pm m$$

This interval is exact when the population distribution is Normal and is approximately correct when n is large in other cases.

FIGURE 6.4 To construct a level C confidence interval, we must find the number z^* . This is how they are related. The area between $-z^*$ and z^* under the standard normal curve is C.

z*	1.645	1.960	2.576
C	90%	95%	99%

X lies between M-Z* of and M+Z* of with probability C so that's the same as saying 4 lies between


X-Z* of and X+Z* of

confidence interval

Width of confidence intervals (ie margin of error) Depends on sample size and confidence level

FIGURE 6.5 Confidence intervals for n = 1200 and n = 300, for Examples 6.4 and 6.5. A sample size 4 times as large results in a confidence interval that is half as wide.

FIGURE 6.6 Confidence intervals for Examples 6.4 and 6.6. The larger the value of *C*, the wider the interval.

SAMPLE SIZE FOR DESIRED MARGIN OF ERROR

The confidence interval for a population mean will have a specified margin of error m when the sample size is

$$n = \left(\frac{z^*\sigma}{m}\right)^2$$