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Problem Statement

How well can ion channel densilies be inferred
from patch clamp data? Likelihood-based methods
are statistically consistent, meaning the correct an-
swer will become increasingly certain as the sam-
ple size increases. But how large does the sample
size need to be? We solve this problem for an over-
simplitied “toy model” aiming to develop software
applicable to more complicated problems.

Toy Model

The toy model consists of an ensemble of n inde-
pendent and identical channels, each residing in
one of two states: open or closed. The patch clamp
unambiguously determines k;, the number of open
channels, at each of the » times that current is sam-
pled. The sample interval is long, so we consider
the samples independent. The probability of see-
ing each channel in the open state is p. Thus the
measurements have Binomial distribution:

ki ~ B(n,p)fori=12...,r

The problem is to estimate n observing {k;} and
knowing p.

Relation to Previous Work

Our toy problem has been studied classically. The
statistics literature includes a relevant paper by
Student and another by Fisher, and more recent pa-
pers by other researchers including neuroscientists
working in the context we consider here. These
papers contribute alternative estimators for n, a
hard problem when p is small, even if known.
Maximum likelihood performs particularly poorly,
showing wide variation of the estimate, for small
perturbations of data. Our work considers the
relaled problem of quanlifying the difficultly of
model selection between two simple alternatives.
How many samples are needed to make the selec-
tion with 95% confidence?
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Resulis

The left column shows probability histograms for k& with n = 100 (blue), n = 99 (red) and n = 90 (yellow).
Overlap is shown as mixed color. The right column shows =+1 standard error (using 4 calculations), as a
function of n, estimating the number of samples needed to confidently falsify an alternative with n — 1
(red), n + 1 (grey), n — 10% (yellow) and n + 10% (green). Note the differing vertical scale.
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Sample Size for 95% Confidence

Monte Carlo simulations estimate the confidence
level of the likelihood-ratio test over a wide
range of sample sizes. A cumulative sum of
log-likelihood-ratios makes this computation effi-
cient. We increase sample size until the confi-
dence threshold is exceeded, repeating the calcu-
lation to attain precision. Bootstrapping and/or
caching likelihoods can greatly reduce computa-
tion times. Sample size vs. estimated confidence
remains noisy so we estimate the needed sample
size as shown:
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Conclusions and Future Work

Our results suggest that the amount of data needed
to falsify an alternative differing from the true
model by an absolute number of channels (e.g. 1)
grows approximately linearly as n increases. The
slope of this line increases with decreasing p. On
the other hand, if the difference between the mod-
els is relative (e.g. 10%) the amount of data needed
for 95% confidence reaches, surprisingly quickly, a
floor of just one sample.

We aim to develop software tools to tackle re-
lated problems for more complicated models. How
much more data would Hodgkin and Huxley have
needed if they had used a current clamp instead
of a voltage clamp? What is better—improving the
measurement noise characteristics of your record-
ings, or their temporal resolution? With tools in
place, students and rescarchers will be able to cas-
ily formulate and answer novel queslions within
the vast space of possible problems.



