Study Guide for Prelim 1
Math 192 - Spring 1997
Written by Don Allers; Revised by Sean Carver

1 Methods of Integration

Substitution

Idea: Rename an ugly piece of the integrand and see if it reduces to a simpler form that you can
integrate.

When? Try this method if your integral has ugly pieces like etan? or cos(Inz), or if it looks like
substitution will turn the integral into an easy one, such as [z"de, f e® dz, or any of the other known
integrals in Table 7.1 on page 556.

Eg:
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Integration By Parts

Trig

When? [ f(z)g(z)dz where f(z) can be easily differentiated, and g(z) easily integrated. Good
choices for f(z) are f(z) = ap+a1z+---a,2" (any polynomial), f(z) = In(z), or f(z) = tan~!(2) (or
any other inverse trig function). Often g() is either sin(z), cos(z), or €%, but g(z) can be anything if
f(z) is a log function or an inverse trig function.

Method: Substitute u = f(z) and dv = g(z) dz. Then use the formula

/udv:uv—/vdu.

(a) /(a:2 —bz)e®dz, (b) /a:lnwdw, (c) /x(lnm)2dm.,

Special Case: This method sometimes works in some surprising cases. For instance, if we don’t
know how to integrate f(z) but we do know how to differentiate it, setting u = f(z) and dv = dz will
sometimes yield an integral we can compute.

Eg:

Eg:

(a) / tan~!(z) dz, (b) / sin(lnz) de, (c) / eV? dz.

Substitutions
When? [ f(z)dz where f(z) is a function with a term like a? + 22, a® — 22, or z? — a2

Idea: Using a trig substitution, we can replace these sums or differences of squares with a single
squared trig term.

Method: Use one of the following implications to simplify the integrand:

-7 ™

z =.-atand, 750§§ = a2+ 2% = a?sec?d
3 -7 ™

T = ‘osing, TSBSE = a’-2?=a2cos?9
™

2= Tasech, 0§0§§ = 22— a?=qatan?0.

(Memorize only when to apply each substitution, then derive the implications from the basic trig
identities sin? § + cos® @ = 1, and sec?d = 1 + tan? 6).
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Eg:

1— z2)3/2 8z d v? 2 —49
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Algebraic Manipulation
Idea: Use algebraic manipulation to simplify the form of the integrand.

Partial Fractions
When? % dz where p(z) and ¢(z) are polynomials, the degree of p is < the degree of ¢ and
we can factor q(x).
Method: The form of our new integrands will vary depending on the factorization of the denom-

inator, however, the following case is a fairly general example. For the integrand Zx_-i-lﬂxi—-"fl%(mj’
we look for constants A, B, C, D, and E such that

z + 47 __A B, C _ Di+E
(z+1D)(z-1)2(=2+1) z+4+1 z-1 (z—-1)2 2241

Breaking the fraction up in this way turns our difficult integral into the sum of four simpler

integrals.
Eg:
z+4 dz

e b —

® [ O [mem
25+ 2 / yi+y? -1
——=ds, (d —dy.
O [erneome @[S
Improper Fractlons

When? f d:c where p(z) and ¢(z) are polynomials and the degree of p is > the degree of ¢.

Method: Use long division to reduce the improper fraction into the sum of a polynomial and a
proper fraction of polynomials. Afterwards, the method of partial fractions is sometimes required
to simplify resulting proper fraction.

Eg:
s 223 43 — 1% + 16t

Completing the Square
When? Try this method if integrand contains a quadratic of the form ¢(z) = az? + bz + ¢,
where a and b are non-zero. Particularly good candidates for this method are integrals of the

form [ d- dx L \/_ or [ M’W, where ¢(z) is the quadratic.

Method Complete the square to turn the quadratic into a square of a linear factor plus a
2 .

constant; e. g. @? + bz +c = (z+ %)% — & + c. Then use a substitution (e. g. u = z + %) to

simplify the integrand. Sometimes a trlg substition is required after the first substitution.

Eg:

8 dx dx
®) /w2—2x+2’ () /\/—t2+4t~3’ © /(z+1)\/x2+2x'

0ld Tricks
Method: Apply trig identities, separate fractions, or multiply by 1 to simplify the integrand.

Eg:
tan? 0 oz + 3 dy
—_— b —_— . —
(2) / sec? 0 @ V1—22? 84, 49 / Ve —1
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2 Improper Integrals

Idea: A proper integral is an integral f: f(z) dz, where a and b are both finite and f(z) is continuous and
finite on [a, b]. For proper integrals, the fundamental theorem of calculus tells us that if F' is an antiderivative

of f (i.e. if F’(x) = f(x)) then f: f(z)dz = F(b) — F(a). We will define an improper integral as a limit of
proper integrals.

Comment The integral f: f(z) dz is improper if: (i) a or b is infinite, or (i) f(z) is not finite on all of
[a,b]. The fundamental theorem of calculus does not apply directly to this class of integrals. Indeed, the
definition of a definite integral given in Chapter 4 explicitly assumes that the integral is proper. Without
the definitions below, an improper integral would be an expression with no meaning.

Solution
Method:

L. If a is finite, and f(z) is continuous on [a, 0o] we define [ f(2) dz = limeyoo [¢ f(2) de.

2. If b is finite, and f(z) is continuous on [—oco, b] we define ffoo Tiz) de = Dt o f: f(z) dz.
3. If a,b are finite, and f(z) is continuous on (a,b] we define [* f(2) dz = lim_, 0+ [* f(z) da.
4. If a, b are finite, and f(z) is continuous on [a,b) we b define [} f(z) de = lim,_,,- [° f(z) da.
5

. If the integral is improper at multiple points on the domain [a,b], we divide this domain into
subintervals [a, ¢1], [c1, ca], . . ., [¢n-1, ¢n), [cn, b] sO that each subinterval contains only one problem
point at one of its endpoints, and no problem points in its interior. Then define f: f(z)de =

fac‘ f(z)dz + fccf f(z)dz + .. 'fcc:_l f(z)dz + fcb,, f(z) dz, applying the above rules to each piece.

1 RE2 dd < 2xde U de
(a) /Omlna:da:, (b) /o 21 (c) /_Oo——(x2+1)2, (d) /-1m

3 Sequences

Eg:

Idea: Given a sequence of numbers {a, } = aj, as,as, ..., the question is whether or not these numbers are
converging to some limit a. We say that {a,} converges to a, written a, — a, as n — oo, if the distance
|an, — a| between the sequence points and a goes to zero as n increases.

Extend the Sequence to a Real Function
Idea: Compute the limit of a sequence as the limit of a function f(z) as ¢ — oo.

When? Use this method if the expression defining the sequence a, can be considered as a real
function in the variable n whose limit as n — oo can be computed easily.

Method: To compute the limit of the sequence, take take the limit of its defining expression as you
would take the limit of a real function. Remember L’Hopital’s Rule. (The theorem behind this method
is the following: If f(n) = a, and limg_o f(z) = L then lim,_ o an = L.

Continuous Function Theorem
Idea: It would be nice if we could move a limit inside a function, that is, if we could say

i f(an) = £ en).

It is not always possible, but this theorem gives us conditions when it is.
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When? Use this method if the terms of the sequence look like a continuous function applied to a
much simpler sequence, for example, for sequences of the form e~ In Qn, SiN @y, or (a,)P (constant p)
where a, converges.

Method: 1If a, converges and f is continuous at lim, _ @y, then you can move the limit inside the

function.
Eg:
nt Iy Inn n+1\"
(a) an =enS+sni2,  (b) a, = (1 + ;) ;v {(c)lerag =tan <—n—) joed)oitagis ( - ) :

Sandwich Theorem
Idea: If the points of our sequence {b,} are sandwiched between the points of two other segenences,
say an < bn < cp, and if these other sequences {a,} and {c,} both have the same limit L, then our
sequence b,, must also have limit L.

When? This method is particularly useful when a, = b, - ¢, where b, is some bounded sequence
and we know that ¢, — 0. Examples of such b,, are b, = 47cos?(n), and b, = (=1)m.

Method: If a, < b, < ¢, and we know that lim,_, o a, = lim, 4o b, = L, then b,, — L as well.

Eg:
a0 =nt cos nsin® n
(a) an=(-1) R (b) ap=—73—,
8
(C) an = (_1)2n+3n1/3, (d) e Sll’l(n + 2)
n

Algebraic Manipulation
Idea: We can often use algebraic manipulation to turn a complicated expression defining a sequence
into a familiar form whose limit is known or can be computed with one of the other methods. (Impor-
tant: Know the limits of the sequences in Table 8.1 on page 625!!!)

Method: Let {a,} and {b,} be convergent sequences such that a, — a and b,, — b as n — co.

1. (limit of the sum = sum of the limits) limp, o (an + by) = a + b.

2. (limit of the product = product of the limits) limy, o (ay, - b,) = ab.
3. (constant multiple rule) limy, o (k - a,) = ka, for any constant k.
4

. (quotient rule) lim,, o, 3> = %, provided b # 0.

Eg:
1 1+ /n 47\" 22
O =l ) ore gt s (ima
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Idea: Any finite sum a; +...4 a,, can be computed by just adding up the terms. Without a definition, an
infinite sum would be an expression with no meaning. We will define an infinite sum as a limit of a sequence
of finite sums.

Method: Given an infinite sum a; +as+. .., we define its kth partial sum to be sx = aj+. . Aag = E'lc Qs
We then define the sum of a series to be the limit of the its sequence of partial sums {s,}. If {s,} — s as
n — 0o, we say that the infinite series ZTO o = hmy 5 Z? ar = lim, o s, converges and has sum s.

Computing Sums

Geometric Series
Idea: Series with terms that look like 7™ for some constant 7 pop up everywhere. Their sums
can be computed exactly with the formulas given below.

When? 3" a, where the terms of a,, are constants raised to the power n.

Method: If |r| < 1, the geometric series Y7 (7" and, S oo, ar™ converge and have sums

< - 1 o n ar®
1;)’" R ;‘" i e-f
On the other hand, if |r| > 1, these geometric series diverge.
Eg:
(o) 9 n 00 9 n-—1 00 11 n oo (_2)2n+1
W 2w o 2(EF) () @ Te

Telescoping Series
Idea: Sometimes cancellation simplifies the expression for the partial sum of a series into a form
whose limit can evaluated easily.

When? 3" °a, where a, can be written a,, = b, — b 4.

Method: Write out the sequence of partial sums, and find its limit directly.

Eg: B .
@ Xn(i) © X (msta)

=0

o 6 = In+1
O Lmmry O Ly

n=1 n=1

Algebraic Manipulation
Idea: Once again, algebraic manipulation can turn something ugly into something familar.
Method: All the algebraic tricks for simplifying integrands listed above can also be used to
simplify summands. In particular, partial fractions can sometimes show that a series is telescoping.
In addition, the following theorem lets us manipulate sums in the same way we manipulate
integrals:

Let >°o° @, = a and Y 5" b, = b be convergent series. Then:

1. (sum rule) 3 ° (an + bn) = a + b.
2. (constant multiple rule) " ka, = ka for any constant k.
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Convergence/Divergence Tests

nth Term Test for Divergence
Idea: If the terms of our sequence a,, are not getting smaller, their infinite sum couldn’t possibly
converge.
When? Always look to see if this gives an easy answer! This is the easiest test to use on most
series, and will often yield a quick divergence result.
Method: If lim, . a, # 0, then Zgo a, must diverge! (If lim, o a, — 0, this test is incon-
clusive.)
Eg:

More tests...
(Several more test will be introduced before Prelim 2).



