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CHAPTER 2 Functions and Graphs

Explore and Discuss ' Let f(x) = x%.

(A) Vertical shift
(B) Horizontal shift

(A) Graphy = f(x) + kfor k = —4,0, and 2 simultaneously in the same coordi-
nate system. Describe the relationship between the graph of y = f(x) and the
graph of y = f(x) + k for any real number &.

(B) Graphy = f(x + h) for h = —4, 0, and 2 simultaneously in the same coordi-
nate system. Describe the relationship between the graph of y = f(x) and the
graph of y = f(x + h) for any real number 4.

m Vertical and Horizontal Shifts A

(A) How are the graphs of y = |x| + 4 andy = |x| — 5 related to the graph of
y = |x|? Confirm your answer by graphing all three functions simultaneously
in the same coordinate system.

(B) How are the graphs of y = |x + 4| andy = |x — 5| related to the graph of
y = |x|? Confirm your answer by graphing all three functions simultaneously
in the same coordinate system.

SOLUTION

(A) The graph of y = |x| + 4 is the same as the graph of y = |x| shifted upward
4 units, and the graph of y = |x| — 5 is the same as the graph of y = |x|
shifted downward 5 units. Figure 2 confirms these conclusions. [It appears that
the graph of y = f(x) + ks the graph of y = f(x) shifted up if k is positive
and down if k is negative.]

(B) The graph of y = |x + 4| is the same as the graph of y = |x| shifted to the
left 4 units, and the graph of y = |x — 5] is the same as the graph of y = |x|
shifted to the right 5 units. Figure 3 confirms these conclusions. [It appears that
the graph of y = f(x + h) is the graph y = f(x) shifted right if 7 is negative
and left if 4 is positive—the opposite of what you might expect.]
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Figure 2 Vertical shifts Figure 3 Horizontal shifts

Matched Problem 2 |

(A) How are the graphs of y = Vx + 5and y = Vx — 4 related to the graph
of y = V/x? Confirm your answer by graphing all three functions simultane-
ously in the same coordinate system.

(B) How are the graphs of y = Vx + 5 and y = Vx — 4 related to the graph
of y = Vx? Confirm your answer by graphing all three functions simultane-
ously in the same coordinate system. e

Comparing the graphs of y = f(x) + k with the graph of y = f(x), we see that
the graph of y = f(x) + k can be obtained from the graph of y = f(x) by vertically
translating (shifting) the graph of the latter upward k units if k is positive and down-
ward | k| units if & is negative. Comparing the graphs of y = f(x + h) with the graph
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SECTION 2.2 Elementary Functions: Graphs and Transformations 61

of y = f(x), we see that the graph of y = f(x + &) can be obtained from the graph
of y = f(x) by horizontally translating (shifting) the graph of the latter 4 units to
the left if 4 is positive and | | units to the right if 4 is negative.

m Vertical and Horizontal Translations (Shifts) The graphs in Figure 4\
are either horizontal or vertical shifts of the graph of f(x) = x2. Write appropriate
equations for functions H, G, M, and N in terms of f.
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Figure 4 Vertical and horizontal shifts

SOLUTION Functions H and G are vertical shifts given by
H(x) =x+2 G(x) =x*— 4
Functions M and N are horizontal shifts given by
M(x) = (x+2)2 N(x) = (x — 3)?
Matched Problem 3 | The graphs in Figure 5 are either horizontal or vertical shifts

of the graph of f(x) = V/x. Write appropriate equations for functions H, G, M,
and N in terms of f,
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Figure 5 Vertical and horizontal shifts J

Reflections, Stretches, and Shrinks

We now investigate how the graph of y = Af(x) is related to the graph of y = f(x)
for different real numbers A.




l ‘ 62 CHAPTER 2 Functions and Graphs

Explore and Discuss 2 (A) Graph y = Ax*for A = 1, 4, and % simultaneously in the same coordinate

system.
(B) Graphy = Ax*for A = —1, —4, and —4% simultaneously in the same coordi-
I nate system.
(C) Describe the relationship between the graph of 4(x) = x* and the graph of

G(x) = Ax?*for any real number A.

Comparing y = Af(x) to y = f(x), we see that the graph of y = Af(x) ca
be obtained from the graph of y = f(x) by multiplying each ordinate value of th
latter by A. The result is a vertical stretch of the graph of y = f(x) if A > 1,
vertical shrink of the graph of y = f(x) if 0 < A < 1, and a reflection in th

x axis if A = —1. If A is a negative number other than —1, then the result is
combination of a reflection in the x axis and either a vertical stretch or a vertice
shrink.

m Reflections, Stretches, and Shrinks

(A) How are the graphs of y = 2|x| and y = 0.5|x| related to the graph of
y = |x|? Confirm your answer by graphing all three functions simultaneously
in the same coordinate system.

(B) How is the graph of y = —2|x| related to the graph of y = |x|? Confirm
your answer by graphing both functions simultaneously in the same coordinate
system.

SOLUTION

(A) The graph of y = 2|x| is a vertical stretch of the graph of y = | x| by a factor
of 2, and the graph of y = 0.5|x| is a vertical shrink of the graph of y = | x|
by a factor of 0.5. Figure 6 confirms this conclusion.

(B) The graph of y = —2|x| is a reflection in the x axis and a vertical stretch of the
graph of y = |x|. Figure 7 confirms this conclusion.

y  y=2 y=1H

= |xi
L e
SRR - £t
j:-lr
g
H}} HE i NHH
y = =2
Figure & Vertical stretch and shrink Figure 7 Reflection and vertical stretch

Matched Problem 4]

(A) How are the graphs of y = 2x and y = 0.5x related to the graph of y = x?
Confirm your answer by graphing all three functions simultaneously in the
same coordinate system. Vertical stretch; vertical shrink

(B) How is the graph of y = —0.5x related to the graph of y = x? Confirm
your answer by graphing both functions in the same coordinate system.
Reflection in the x-axis and vertical shrink —




Explore and Discuss 3

SR

Figure 9 Combined transformations

SECTION 2.2 Elementary Funcfions: Graphs and Transformations 63

The various transformations considered above are summarized in the following
box for easy reference:

SUMMARY Graph Transformations
Vertical Translation:
k>0  Shift graph of y = f(x) up k units.

= fx) + k
y = fx) {k < 0  Shift graph of y = f(x) down || units.

Horizontal Translation:

h > 0  Shift graph of y = f(x) left £ units.

D= flx +
y =zt h) {h 0  Shift graph of y = f(x) right | &| units.

Reflection:
y = —f(x) Reflect the graph of y = f(x) in the x axis.

Vertical Stretch and Shrink:

A>1 Stretch graph of y = f(x) vertically

by muitiplying each ordinate value by A.
0 <A <1 Shrink graph of y = f(x) vertically

by multiplying each ordinate value by A.

y = Af(x)

Explain why applying any of the graph transformations in the summary box to a
linear function produces another linear function.

m Combining Graph Transformations  Discuss the relationship be-\
tween the graphs of y = —|x — 3| + 1 and y = |x|. Confirm your answer by
graphing both functions simultaneously in the same coordinate system.

SOLUTION The graph of y = —|x — 3| + 1 is a reflection of the graph of
y = |x| in the x axis, followed by a horizontal translation of 3 units to the right,
and a vertical translation of 1 unit upward. Figure 8 confirms this description.

Figure 8 Combined transformations

Matched Problem 5) The graph of y = G(x) in Figure 9 involves a reflection
and a translation of the graph of y = x°. Describe how the graph of function G is
related to the graph of y = x° and find an equation of the function G. I
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