Homework #6 Math 211

Problems for Section 1.6

For Problems 1–16, solve for t using natural logarithms.

1.
$$5^t = 7$$

3.
$$2 = (1.02)^t$$

5.
$$50 = 10 \cdot 3^t$$

7.
$$10 = e^t$$

9.
$$e^{3t} = 100$$

11.
$$40 = 100e^{-0.03t}$$

13.
$$B = Pe^{rt}$$

15.
$$5e^{3t} = 8e^{2t}$$

21. The following formulas give the populations of four different towns, A, B, C, and D, with t in years from now.

$$P_A = 600e^{0.08t}$$
 $P_B = 1000e^{-0.02t}$
 $P_C = 1200e^{0.03t}$ $P_D = 900e^{0.12t}$

- (a) Which town is growing fastest (that is, has the largest percentage growth rate)?
- (b) Which town is the largest now?
- (c) Are any of the towns decreasing in size? If so, which one(s)?
- 41. In 2000, there were about 213 million vehicles (cars and trucks) and about 281 million people in the US. The number of vehicles has been growing at 4% a year, while the population has been growing at 1% a year. If the growth rates remain constant, when is there, on average, one vehicle per person?

Problems for Section 1.7

- 1. World wind energy generating⁵⁹ capacity, W, was 18,000 megawatts in 2000 and has been increasing at a continuous rate of approximately 27% per year. Assume this rate continues.
- 5. If a bank pays 6% per year interest compounded continuously, how long does it take for the balance in an account to double?
 - 17. A firm decides to increase output at a constant relative rate from its current level of 20,000 to 30,000 units during the next five years. Calculate the annual percent rate of increase required to achieve this growth.
 - 23. If the quantity of a substance decreases by 4% in 10 hours, find its half-life.

Problems for Section 1.8

1. For
$$g(x) = x^2 + 2x + 3$$
, find and simplify:

(a)
$$g(2+h)$$

(b)
$$g(2)$$

(c)
$$g(2+h)-g(2)$$

For the functions f and g in Problems 3-6, find

- (a) f(g(1))(d) g(f(x))
- (b) g(f(1))(e) f(t)g(t)
 -)
- (c) f(g(x))

3.
$$f(x) = x^2$$
, $g(x) = x + 1$

Problems for Section 1.9

In Problems 1–12, determine whether or not the function is a power function. If it is a power function, write it in the form $y = kx^p$ and give the values of k and p.

1.
$$y = 5\sqrt{x}$$

3.
$$y = 2^x$$

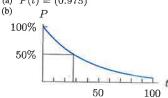
5.
$$y = (3x^5)^2$$

7.
$$y = 3 \cdot 5^x$$

9.
$$y = \frac{8}{\pi}$$

11.
$$y = 3x^2 + 4$$

lutions


Section 1.6

- $1 t = (\ln 7)/(\ln 5) \approx 1.209$
- $3 t = (\ln 2)/(\ln 1.02) \approx 35.003$
- $5 t = (\ln 5)/(\ln 3) \approx 1.465$
- 7 $t = \ln 10 \approx 2.3026$
- 9 $t = (\ln 100)/3 \approx 1.535$
- 11 t = 30.54
- $13 \quad t = (\ln B \ln P)/r$
- 15 $t = \ln 8 \ln 5 \approx 0.47$
- 17 5;7%
- 19 15; -6% (continuous)
- 21 (a) D
 - (b) C
 - (c) B
- 23 $P = 15(1.2840)^t$; growth
- 25 $P = P_0(1.2214)^t$; growth
- 27 $P = 15e^{0.4055t}$
- 29 $P = 174e^{-0.1054t}$
- 31 $P = 6.4e^{0.01252t}$
- 33 (a) \$5 million; \$3.704 million dollars
 - (b) 4.108 years
- - (b) $P = 25e^{-0.128t}$, 12.8%
- 37 (a) $P = 5.4(1.034)^t$ (b) $P = 5.4e^{0.0334t}$

 - (c) Annual = 3.4% Continuous = 3.3%
- 39 9.53%
- 41 2009

Section 1.7

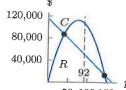
- 1 (a) $W = 18000e^{0.27t}$
- (b) About 2010
- 3 \$14,918.25
- 5 About 11.6 years
- 13 A: continuous B: annual \$20
- 15 (a) 47.6%
 - (b) 23.7%
- 17 8.45%
- 19 (a) $P(t) = (0.975)^t$

- (c) About 27 years
- (d) About 8%
- 21 (a) 4 years
 - (b) 4 years
- 23 About 173 hours
- 25 96.34 years

Section 1.8

- 1 (a) $h^2 + 6h + 11$
- (b) 11 (c) $h^2 + 6h$
- 3 (a) 4
 - (b) 2
- (b) 2 (c) $(x+1)^2$ (d) $x^2 + 1$ (e) $t^2(t+1)$

Section 1.9


- $1 \ y = 5x^{1/2}$
- 3 Not a power function.
- $5 y = 9x^{10}$
- 7 Not a power function
- $9 y = 8x^{-1}$
- 11 Not a power function
- 13 $S = kh^2$
- 15 v = d/t
- 17 $N = kA^{1/4}$, with k > 0, Increasing, concave down

species of lizard

- 19 (a) $y = (x-2)^3 + 1$ (b) $y = -(x+3)^2 2$
- 21 Yes; $k \approx 0.0087$
- 23 $N = k/L^2$; small
- 25 (a) $T = kB^{1/4}$
- (b) k = 17.4
- (c) 50.3 seconds
- 27 (a) $N = kP^{0.77}$
 - (b) A has 5.888 times more than B
 - (c) Town
- ·29 (a) 0.5125
 - (b) 0.3162
 - (c) 201,583 dynes/cm²
- 31 (a) C = 115,000 700p $R = 3000p - 20p^2$

